9,137 research outputs found

    Magnetic behavior of single crystalline Ho2_2PdSi3_3

    Full text link
    The magnetic behavior of single-crystal Ho2_2PdSi3_3, crystallizing in an AlB2_2-derived hexagonal structure, is investigated by magnetic susceptibility (χ\chi) and electrical resistivity (ρ\rho) measurements along two directions. There is no dramatic anisotropy in the high temperature Curie-Weiss parameter or in the ρ\rho and isothermal magnetization data, though there is a noticeable anisotropy in the magnitude of ρ\rho between two perpendicular orientations. The degree of anisotropy is overall less prominent than in the Gd (which is an S-state ion!) and Tb analogues. A point of emphasis is that this compound undergoes long range magnetic ordering below 8 K as in the case of analogous Gd and Dy compounds. Considering this fact for these compounds with well-localised f-orbital, the spin glass freezing noted for isomorphous U compounds in the recent literature could be attributed to the role of the f-ligand hybridization, rather than just Pd-Si disorder.Comment: Physical Review B, in pres

    The longest excursion of stochastic processes in nonequilibrium systems

    Full text link
    We consider the excursions, i.e. the intervals between consecutive zeros, of stochastic processes that arise in a variety of nonequilibrium systems and study the temporal growth of the longest one l_{\max}(t) up to time t. For smooth processes, we find a universal linear growth \simeq Q_{\infty} t with a model dependent amplitude Q_\infty. In contrast, for non-smooth processes with a persistence exponent \theta, we show that < l_{\max}(t) > has a linear growth if \theta \sim t^{1-\psi} if \theta > \theta_c. The amplitude Q_{\infty} and the exponent \psi are novel quantities associated to nonequilibrium dynamics. These behaviors are obtained by exact analytical calculations for renewal and multiplicative processes and numerical simulations for other systems such as the coarsening dynamics in Ising model as well as the diffusion equation with random initial conditions.Comment: 4 pages,2 figure

    The dynamics of bistable liquid crystal wells

    Get PDF
    A planar bistable liquid crystal device, reported in Tsakonas et al. [27], is modelled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micron-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W ≥ 0 while rotated solutions only exist for W ≥ Wc > 0, where Wc is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal to rotated and rotated to diagonal switching by allowing for variable anchoring strength across the domain boundary

    Dark Matter candidate in a Heavy Higgs Model - Direct Detection Rates

    Full text link
    We investigate direct detection rates for Dark Matter candidates arise in a SU(2)L×U(1)YSU(2)_L\times U(1)_Y with an additional doublet Higgs proposed by Barbieri, Hall and Rychkov. We refer this model as `Heavy Higgs Model'. The Standard Model Higgs mass comes out in this model very heavy adopting the few per cent chance that there is no Higgs boson mass below 200 GeV. The additional Higgs boson develops neither any VEV due to the choice of coefficient of the scalar potential of the model nor it has any coupling with fermions due to the incorporation of a discrete parity symmetry. Thus, the neutral components of the extra doublet are stable and can be considered as probable candidate of Cold Dark Matter. We have made calculations for three different types of Dark Matter experiments, namely, 76^{76}Ge (like GENIUS), DAMA (NaI) and XENON (131^{131}Xe). Also demonstrated the annual variation of Dark Matter detection in case of all three detectors considered.Comment: 10 pages, 9 figures, figures unchanged, text modified, version to appear in Mod. Phys. Lett.
    corecore